
Bit operations in Python are operations that directly manipulate bits, which
are the most basic units of data in computing. These operations are typically
performed on integers, since they are stored as binary numbers in memory.
Python provides several bitwise operators that allow you to work with the
individual bits of a number.

Here are the common bitwise operators in Python:

1. AND (&): Compares each bit of two numbers and returns a new number
whose bits are 1 if both corresponding bits of the original numbers were 1,
otherwise the bit is 0.

Example: 5 & 3 → 0101 & 0011 = 0001 → result is 1.

2. OR (|): Compares each bit of two numbers and returns a new number
whose bits are 1 if at least one of the corresponding bits was 1.

Example: 5 | 3 → 0101 | 0011 = 0111 → result is 7.

3. XOR (^): Compares each bit of two numbers and returns a new number
whose bits are 1 if only one of the corresponding bits is 1 (but not both).

Example: 5 ^ 3 → 0101 ^ 0011 = 0110 → result is 6.

4. NOT (~): Flips each bit (0 becomes 1, and 1 becomes 0) in the number. It
returns the two's complement of the number.

Example: ~5 → ~0101 = 1010 (in two's complement, this represents -6).

5. Left Shift (<<): Shifts the bits of the number to the left by a specified
number of positions. Each left shift multiplies the number by 2.

Example: 5 << 1 → 0101 << 1 = 1010 → result is 10.

6. Right Shift (>>): Shifts the bits of the number to the right by a specified
number of positions. Each right shift divides the number by 2 (truncating
toward zero).

Example: 5 >> 1 → 0101 >> 1 = 0010 → result is 2.

Bit operations are useful in low-level programming, such as systems
programming, working with binary data, encryption algorithms, or
optimizing specific calculations.

In Python, you can easily convert an integer to binary
and binary to an integer using built-in functions:

1. Convert Integer to Binary

You can use the bin() function to convert an integer to its binary
representation. This function returns the binary string prefixed with 0b to
indicate that it is in binary format.

Convert integer to binary

num = 10
binary = bin(num)
print(binary) # Output: '0b1010'

If you want to remove the 0b prefix and only get the binary digits, you can
slice the string:

binary_digits = bin(num)[2:]
print(binary_digits) # Output: '1010'

2. Convert Binary to Integer

To convert a binary string back to an integer, you can use the int() function,
specifying the base as 2.

Convert binary to integer
binary_str = '1010'
integer = int(binary_str, 2)
print(integer) # Output: 10

These methods are simple and efficient for handling
conversions between integers and their binary forms in
Python.

1. Convert Integer to Binary:

Step 1: Take the integer.

Step 2: Divide the integer by 2.

Step 3: Record the remainder (either 0 or 1).

Step 4: Continue dividing the quotient by 2 until the quotient is 0.

Step 5: The binary equivalent is the sequence of remainders read from bottom
to top (last remainder to first).

Example: Convert 10 to binary.

10 ÷ 2 = 5, remainder 0

5 ÷ 2 = 2, remainder 1

2 ÷ 2 = 1, remainder 0

1 ÷ 2 = 0, remainder 1

Reading the remainders bottom to top, 10 in binary is 1010.

2. Convert Binary to Integer:

Step 1: Take the binary number.

Step 2: Starting from the rightmost bit, multiply each bit by 2 raised to the
power of its position (starting from 0).

Step 3: Add all the results together.

Example: Convert 1010 to decimal.

(1 × 2³) + (0 × 2²) + (1 × 2¹) + (0 × 2⁰)

(1 × 8) + (0 × 4) + (1 × 2) + (0 × 1) = 8 + 0 + 2 + 0 = 10

So, 1010 in binary equals 10 in decimal.

