
Error handling in Python is primarily done using try, except, else, and finally
blocks. This mechanism allows you to handle runtime errors gracefully,
ensuring that your program can recover or fail in a controlled manner.

Basic Structure

try:
Code that might raise an exception

except SomeException as e:
Code that runs if the exception occurs

else:
Code that runs if no exception occurs

finally:
Code that always runs, regardless of whether an

exception occurred

Key Components:
1. try block: You place code that might throw an exception inside

this block.
2. except block: When an exception occurs, the code in the except

block executes. You can specify a particular exception type or catch
all exceptions.

3. else block (optional): This block runs if no exceptions were raised
in the try block.

4. finally block (optional): Code in this block will always execute,
whether an exception occurs or not, useful for cleanup operations
like closing files or network connections.

Example: Handling a Specific Exception

try:
num = int(input("Enter a number: "))
print(10 / num)

except ValueError:
print("Invalid input! Please enter an integer.")

except ZeroDivisionError:
print("Division by zero is not allowed.")

else:
print("The operation was successful.")

finally:
print("End of operation.")

In this example:

● If a ValueError (invalid input) or ZeroDivisionError occurs, a specific
message is printed.

● The else block runs if no exceptions occur.
● The finally block runs regardless of whether an exception occurs, which

is useful for cleanup.

Common Exceptions in Python:

● ValueError: Raised when a function gets an argument of the right type
but inappropriate value (e.g., converting "abc" to an integer).

● ZeroDivisionError: Raised when trying to divide by zero.
● FileNotFoundError: Raised when trying to access a file that doesn’t

exist.
● TypeError: Raised when an operation or function is applied to an object

of an inappropriate type.

Catching Multiple Exceptions

You can catch multiple exceptions using a tuple:

try:
Code that might raise either an IOError or ValueError

except (IOError, ValueError) as e:
print(f"An error occurred: {e}")

Raising Exceptions

You can also raise your own exceptions using the raise keyword.

def divide(a, b):

if b == 0:

raise ZeroDivisionError("You can't divide by zero!")

return a / b

try:

result = divide(10, 0)

except ZeroDivisionError as e:

print(e)

Custom Exceptions

You can create custom exceptions by subclassing the Exception class:

class CustomError(Exception):

pass

try:

raise CustomError("This is a custom error.")

except CustomError as e:

print(e)

